

Environmental product declaration Termex- cellulose fiber

Valid for 5 years starting from 1.3.2014 assuming that there are no changes in the manufacturing process or source of purchased electricity.

Termex-Eriste Oy PL 34, 43101 Saarijärvi Puh. 0207 809 880 www.termex.fi

Description of the product

Termex - cellulose insulation is made of newspaper, magnesium sulphate and boric acid. The product can be

used as heat insulation in roofs, walls and floors and as additi onal heat insulation in log walls.

Puhallus-Termex can be freely installed in an open insulation space (horizontal and slightly tilting objects, roofs and base floors). Sidox-Termex can be blown with adhesives into an open insulation space (walls, roofs and base floors). Ontelo-Termex can be blown into a closed insulation space with high density without indentation (sloping floors, walls)

There is a blowing equipment in the installation car (truck) and a tube of 40m, operated by 2 installers. It should be possible to access the insulated space as near as possible. The installation can also be done with a do-it-yourself blowing equipment.

kg/m³
26 - 36
42 - 65
32 - 65
55 – 65

Technical features

The European technical approval ETA 10/0399 and the CE-label Indentation for Puhallus-Termex 20 %, others 0 % Puhallus-Termex fire resistance class E

Thermal conductivity, λDECLARED (23,50)						
Puhallus-Termex	0,039 W/mK					
Vino-Ontelo-Termex	0,040 W/mK					
Sidox-Termex	0,040 W/mK					
Pystyontelo-Termex	0,043 W/mK					

The U-value depends on the insulation thickness and structure.

More information about the product:

http://www.termex.fi/en/ecological/approvals-and-reports

The environmental product declaration is based on EN 15804:2012 and EN 16485:2014. CO_2 content is based on the EN 16449:2014. Impacts were calculated to the product and construction stages. The product stage, A1 – A3, consists of the procurement of raw-materials, transportation and manufacturing of the product. The construction stage, A4 - A5, consists of conventional transport to the construction site and installation of the product.

Environmental impacts per 1 kg of the product

		Product stage			Co	nstruction st	age	
Environmental impact parameter	Unit	A1	A2	A3	A1-A3	A4	A5	A4-A5
Energy	•		•				•	
Non-renewable primary energy	MJ	1,6	2,7	0,059	4,3	0,16	0,15	0,31
Renewable primary energy	MJ	0,059	0,002	0,93	0,99	1,2E-04	0,019	0,019
Impact categories								
Global warming potential, GWP	g CO ₂ - equiv	70	104	4,4	178	6,0	14	20
Depletion potential of the stratospheric ozone layer, ODP	g CFC11- equiv	1,0E-06	2,1E-07	8,5E-09	1,3E-06	1,3E-08	-	1,3E-08
Acidification potential of soil and water, AP	g SO ₂ -ekv	0,45	1,9	5,6E-03	2,3	0,024	0,036	0,059
Eutrophication potential, EP	g PO₄³- equiv	0,12	0,25	5,5E-04	0,37	5,3E-03	3,4E-03	8,7E-03
Formation potential of tropospheric ozone, POCP	g C₂H₄- equiv	-8,6E-03	0,097	4,4E-04	0,089	1,6E-03	1,9E-03	3,4E-03
Resources								
Abiotic depletion potential (ADP-elements) for non fossil resources, ADP	g SB- equiv	6,9E-04	4,1E-06	1,7E-07	7,0E-04	2,5E-07	2,1E-05	2,1E-05
Abiotic depletion potential (ADP-fossil fuels) for fossil resources	MJ	1,5	1,4	0,059	3,0	0,090	0,15	0,24
Use of secondary material	kg	0,83	-	-	0,83	-	-	-
Use of renewable secondary fuels	MJ	3,5E-04	-	-	3,5E-04	-	-	-
Use of non-renewable secondary fuels	MJ	7,0E-04	-	-	7,0E-04	-	-	-
Use of net fresh water	m³	4,2E-03	0,011	3,7E-04	0,015	6,6E-04	5,2E-04	1,2E-03
Waste		·			·		·	
Non-hazardous waste	g	1,5	0,058	4,1	5,6	3,6E-03	0,31	0,31
Hazardous waste	g	0,036		0,39	0,43	-	4,4E-05	4,4E-05
Radioactive waste	g	8,3E-04	2,6E-03	1,1E-04	3,6E-03	1,6E-04	4,1E-05	2,0E-04
Biogenic carbon as CO ₂	kq	1,2						

Other life cycle stages

According to the manufacturer:

- It can be assumed that during 50 years of normal use the product will not require any maintenance or repairs. Therefore, the environmental impacts during stages B2 (maintenance) B4 (replacement) is zero.
- In the end of the life cycle (stage D) the product can be reused in another building or it can be used as fuel or soil amendment when diluted.

The environmental product declaration is based on EN 15804:2012 and EN 16485:2014. CO_2 content is based on the EN 16449:2014. Impacts were calculated to the product and construction stages. The product stage, A1 – A3, consists of the procurement of raw-materials, transportation and manufacturing of the product. The construction stage, A4 - A5, consists of conventional transport to the construction site and installation of the product.